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ABSTRACT

Nonmagnetic solids in a superparamagnetic ferrofluid are
subjected to body forces proportional to the intensity of
magnetization of the fluid and the gradient of the magnetic
field. An apparent density of the fluid can be defined from
the force equations, and since the apparent density can be much
larger than the true density, it is possible to levitate or
float dense objects. Mixtures of solids with a density greater
than the apparent density sink while lower density solids float.

In practice it is difficult to create a uniform gradient
over a large volume and "single gap'" magnetic separators require
very large magnets or have a limited throughput. To overcome that
problem, "multiple gap" magnetic grids have been designed. Such
grids consist of planar arrays of parallel bars of alternating
polarity, driven by permanent magnets. When immersed in ferrofluid,
magnetic grids create nonuniform field gradients and apparent
densities in the fluid. However, both analysis and experimental
measurements show that the grid acts as a barrier to particles
below a critical demsity, while permitting more dense particles
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to fall through the grid. Thus, a magnetic grid filter can be
used as a high throughput binary separator of solids according

to their densities. Such filters can be cascaded for more complex
separations.

Several magnetic grid filters have been designed, built,
and tested. Magnetic measurements qualitatively agree with the
theoretical predictions. Experiments with synthetic mixtures
have demonstrated that good binary separations can be made.

INTRODUCTION

The unusual properties of "ferrofluids" have been intensively
studied in recent years and were reviewed at an international
workshop in 1977 (1). Such fluids are superparamagnetic and are
strongly influenced by magnetic fields. Rosensweig (2-4) and
others (5-7) have developed processes for levitating dense
nonmagnetic objects in ferrofluids, based on the attraction of
the fluid by the field. A field gradient can be established in
the ferrofluid in the gap of a large magnet, so that there will
be an upward buoyant force on the object of sufficient magnitude
to oppose the downward force of gravity. In this way one can
levitate the densest materials on earth.

Since the levitation depends on the density, it is possible
to use ferrofluids to separate solid objects of different densities.
Density separation processes based on ferrofluids have been
developed by the Avco Corporation (2-5, 8) and by the U. S. Bureau
of Mines (6, 7). The ferrofluid and the objects to be separated
are contained within or pass through the gap of a large electro-
magnet. The pole pieces of the magnet are usually shaped to create
a nearly uniform field gradient over a substantial volume. Although
such processes are workable, they require expensive energy-consuming
magnets. The material throughput is limited because all of the
material to be separated must pass through the relatively small gap
region. It is difficult to "scale-up" the process without

increasing the size or number of large magnets.
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In this paper, we describe a different way to create the
required field gradients by use of "magnetic grids'. There are
arrays of parallel poles of alternating polarity that can be
completely immersed in the ferrofluid. Analysis and experiments
both show that the nonuniform field gradients near such structures
can act as a barrier to low density particles while permitting high
density particles to fall through the grid. The design of magnetic
grids and their use in practical binary density separation processes

will be described.

Ferrofluid Properties

Ferrofluids are complex colloidal suspensions of ferromagnetic
particles in a liquid vehicle. In our laboratory we have developed
methods for making multi-liter quantities of ferrofluids of
magnetite in kerosene, using a variation of the peptization process
of Reimers (9). These fluids are stable and of sufficient strength
for use in magnetic separation processes. Processes for reconcen-
trating diluted ferrofluids have also been developed in our
laboratory.

Ferrofluids have many fascinating characteristics, but the
property of most interest in density separations is the magnetiza-
tion induced in the fluid by a magnetic field. The shape of the
magnetization curve is shown schematically in Figure 1, where we
plot the intensity of magnetization I as a function of the applied
field H (10). After an initial linear region, the intensity
approaches a saturation value, Is, for relatively low values of
the applied field. The curve is single~valued and exhibits no
hysteresis. This form of magnetization is characteristic of
superparamagnets and the curve should ideally follow the Langevin
function. Real fluids have a distribution of particle sizes and
may deviate appreciably from the ideal. The magnetization curve
of a ferrofluid can be directly displayed on an oscilloscope with

a loop-tracer circuit previously described (11).
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FIGURE 1 Magnetization curve for ferrofluid.

A typical kerosene based ferrofluid will saturate in a field

of ca 103 Am“1 and have an intensity of magnetization of 0.02-0.04 T.

The true density will be near that of water (103 kg m_3) and the

3 kg m_1 s_l. In the analyses given below, we

viscosity ca 4 x 10~
shall usually assume that the field exceeds the critical value and
that the magnetization is saturated. The fluid strength is taken

to be the saturation magnetization IS.

Forces in Ferrofluids

A rigid solid object immersed in a ferrofluid in a magnetic
field is subjected to several forces. The gravitational force Fg,

acting downward on the body is
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Fg = (@ -m) g =V, (o -pg) 8 (1

where m and me are the masses of the object and the displaced

fluid, Vo is the volume of the object, po and pg are the densities
—

of the object and the fluid, and g is the gravitational accelera-

tion. Due to the presence of the ferrofluid, a magnetic force

———
Fm also acts on the object. This force is

— S
FE =V (IO-If) VH (2)

where IO and If are the izfensities of magnetization of the object
and the ferrofluid, and VH is the gradient of the magnetic field.
This force acts in the direction of the gradient. These are the
only relevant static forces, but additional forces of hydrodynamic
resistance appear when the object moves through the fluid.

If the vector sum of the static forces is zero, the object
will be stationary. By defining the vertical positive direction
as upward, and noting that §>'is directed downward, equilibrium
is obtained when

(1,-1,) VE = (o -0) B ©)
For Eq 3 to be obeyed, the gradient must be vertical and
Vﬁ-= VHZ = dH/dz. The particular value of po that satisfies Eq 3
may be defined as the "apparent density" of the ferrofluid. 1In
the usual case where the object is nonmagnetic, the apparent
density is given by

P, = Pg - T VH /g )]
An object of density Py > Pg will tend to sink in the fluid,
whereas an object of density po < pa will tend to float.

The concept of apparent density can be extended to regions
where the gradient has a horizontal component but only the vertical

component is used in Eq 4.

Analysis of Simple Grids

A magnetic grid is a planar array of parallel bars of
alternating magnetic polarity. The construction of real magnetic

grids is described in a later section. The magnetic field around
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real grids is complex, but can be approximated by considering ideal
grids, where the poles are represented by small semi-infinite
cylinders or wires.

The problem of determining the spatial distribution of the
field near an array of cylindric magnetic poles is analogous to
finding the field near current--carrying wires, which may be
calculated by Ampere's law. At a given point in space, the field
produced by each wire is found and the vector sum gives the total
field. The method yields analytic solutions for simple cases and
machine computations may be used for more complex arrays. The
gradient of the magnitude of the field may be found by differen-
tiation.

For the trivial case of a single wire carrying a current J,
the field at a distance r is H = J/2wr. The gradient is
VH = —J/anz, directed radially. If such a single wire or pole
were immersed in ferrofluid, the gradient would act to repel
nonmagnetic objects from the wire.

The next simplest case is two wires separated by a distance
2a, carrying equal but oppositely directed currents, J. The

magnitude of the field is found to be

H=L[~ 5 22]=Jh(5)
Ta L(Y + )"+ 2 ] [}y - D"+ z J wa

where y and z are the distances from the center between wires, in
units of a. A map of the function h is shown in Figure 2. High
values of H occur near the wires and low values far away, with a
saddle point at the origin. The magnitude of the gradient may be

expressed as

VH=:£{: (Y2+Z_2Ll/2 2:|=_'_2_‘lf (6)

naz (1 + y)2 + zz] [(l - y)2 + z waz

A map of the function f is shown in Figure 3. The gradient vanishes
at the origin and at infinity. The vertical component of the
gradient vanishes at z = 0. High values occur near the wires

where the contours circle each wire. Lower valued contours map

around both wires. There is a critical value (f=.325) which
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1/4

1/3

FIGURE 2 Map of the magnetic field intensity around two
conductors. Dimensions are relative to a, where
2a is the distance between wires.

separates the two regimes. This is the least of the high values
of f encountered on any path between the wires. If the wire pair
were immersed in ferrofluid only objects that could surmount this
gradient could pass between the wires.

Complete analytic solutions can be derived for larger arrays,
but they are cumbersome and machine calculations are preferred.
However, there are special positions where the analysis is greatly
simplified by symmetry. The vertical central plane dividing an
array of wires in half is such a special position. For an even
number of wires and an odd number of gaps, the problem degenerates
to computing the cumulative effect of pairs of wires spaced at
progressively greater distances. The field and field gradient are

given by oscillating series of term
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FIGURE 3 Map of the magnitude of the field gradient around
two conductors. Dimensions are the same as
Figure 2.
o= R ekt Sl 7
ma | l+z 9tz 25+z n +z
=H h (7a)
s n
= =5 By s 2 s S L (®)
Ta C(1+25) (9+z7) (25+z7) (n"+z")
= (—ZHS/a) fn (8a)

where z is the vertical distance above the grid in units of a. The
gradient is vertical on this plane; there is no horizontal component.
While the field function hn is symmetric about the grid, the gradient
function fn depends on the sign of z and will change from upward to
downward in passing through the plane of the grid. The functions hn

and fn are plotted in Figure 4 and Figure 5, The hn function is
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FIGURE 4 Plot of the field function h, for an array of ntl

conductors and n gaps. The distance z is in units
of a, the half-spacing of the conductors.

displaced as the number of gaps n increases, due to the oscillating
series, and can even have negative values. The fn function is less
effected by the number of wires. The position of the maximum is
essentially unchanged and the peak value is nearly constant. This
is important in the separation processes to be described, because it
means that the local forces do not depend appreciably on the number
of wires or poles.

For an infinite array of wires, the value of hn at the origin
approaches /4. It is convenient to define the maximum value of H
for a single pair of wires as HS, the standard central field, which
corresponds to hn = 1., For an infinite array the central field Ho
will be (H/Q)Hs. The critical gradient corresponds to the maximum

value of fn. It occurs at a level close to z = 1/V 3 = .58, which

is the exact value for a single gap. The value of fn at this

height varies with n according to the table.



13:57 25 January 2011

Downl oaded At:

348 FAY AND QUETS

n £ (at z=1/V"3)
1 .325

3 .305

5 .309

7 .308

o .30823

The convergence is rapid and for all practical purposes, that peak
value is constant and equal to .3l. The insensitivity of fn to
the value n indicates that each gap of a large grid acts approxi-
mately the same.

Machine calculations have been used to find the magnetic field,

the magnitude of the field, the gradient of the field, the magnitude

.30

.20 \

10 \

NS

9
[~
—
%\\
0 |
0 2 4 6 8 10 2 4 6 B 20 2 4 6 B 30
z
FIGURE 5 Plot of the gradient function f, for an array of

o+l conductor and n gaps. The distance z is the
same as in Figure 4. Note that the peak positions
and peak heights are nearly identical.
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of the gradient and the horizontal and vertical components of the
gradient around magnetic grid structures. The vertical component
of the gradient determines the apparent density according to Eq 4.
A contour map of the vertical component of the gradient in the
region above five wires of a large array is shown in Figure 6.
Low values map as wavy sheets over the grid; high values map as
lobes over the wires. A critical value separates the two regimes.
The critical contour has saddle points on the vertical planes
midway between the wires. These points represent the highest value
on these planes and are called the critical points. A similar map
could be drawn below the plane of the wires, but these forces are
directed downward and cannot produce levitation.

Various computational methods have been used to determine the
magnetic fields near shaped poles of finite dimensions. Corners
and sharp edges on the poles create local perturbations of the fields
but, in general, the pole shape has a relatively small effect on the

contour maps. Rounded poles produce vertical forces quite

UP

HORIZONTAL DISTANCES
ARBITRARY UNITS

LATERAL

VERTICAL DISTANCES
ARBITRARY UNITS

N -
A X

T G CRRCFICE

GAP GAP GAP GAP GAP GAP
CENTER CENTER CENTER CENTER CENTER CENTER

COUNTOURS OF EQUAL RELATIVE
FORCE. ARBITRARY FORCE
o

FIGURE 6 Contour map of the vertical forces near five wires
of a large array. The critical points occur at b
and similar points.



13:57 25 January 2011

Downl oaded At:

350 FAY AND QUETS

similar to Figure 6, but the size of the pole must be accommo-

dated.

Density Separation in Nonuniform Gradients

An ordinary fluid of density g may be used to separate solids.
Objects more dense than pf sink while objects less dense than pf
float. For a ferrofluid the separation depends on the apparent
density P oo which depends on the vertical component of the
gradient by Eq 4. The density of an ordinary fluid is uniform
over its volume. It is natural to want to make pa uniform over
an appreciable volume to make it analogous to normal fluids.

This requires that the vertical component of the gradient be
uniform. Specially shaped pole pieces have been used to create
regions where the gradient is nearly uniform (8). This is
unnecessary. Density separations can be performed in the
nonuniform gradients produced by magnetic grids.

The density separation process can be described with the aid
of the apparent density profile shown in Figure 7. This is a plot
of the apparent density, on the vertical plane midway between a
pair of poles or wires, versus the height above the grid. The
shape of the curve can be determined from the function fn of
Figure 5. The maximum apparent demsity occurs at the critical
point and is termed the critical density P A heavy object of
density P > Pe will not intersect the apparent density curve for
any values of the altitude z. Such an object will sink and pass
through the grid. The line representing the density of a light
object Py, < Pe will intersect the apparent density curve twice.
The upper intersection is a point of stable equilibrium but the
lower point is unstable. The object cannot rest here but must
sink or float. 1In fact, there are no positions of stable
equilibrium below the critical point for objects denser than Per
This is significant because it means that objects cannot clog

the grid.



13:57 25 January 2011

Downl oaded At:

DENSITY SEPARATION OF SOLIDS 351

b4
6 & On
e
( STABLE
Z4 pv
<—-(51ré%l—-
“‘6%'6%’
Z;
Z
UNSTABLE -
/ p pc
FIGURE 7 The apparent density profile. Intersections of

constant density lines yield stable equilibrium
points above the critical point and unstable
equilibrium points below the critical point.

Above the critical point objects of density between pf and
pc will float at a level where their density equals pa. While
it is possible to consider collecting particles at different
heights to obtain a fractionation according to density, it is
more practical to use the grid as a binary separator. In
operation, particles are fed to the grid near but agbove the

height of the critical points. Particles less dense than Pe
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will float above the grid where they can be removed laterally.

The vertical components of initial kinetic energy of the particles
must be kept small so that the particles cannot puncture the
barrier. Particles more dense than e will sink through the grid
where they can be collected and removed.

It has been assumed that the grid is horizontal. Tilting of
the grid plane can be beneficial because it permits using some of
the gravitational force to transport material over the grid. It
is convenient to rotate the coordinate frame with the grid and
then determine the forces normal to and perpendicular to the grid.
The vertical component of the gradient, Figure 6, is now the
normal component. The gravitational force may be decomposed into
tangential and normal (to the grid) components by replacinggL in
Eq 1 with g sino and -g cosa, where g is the scalar acceleration
of gravity and o is the angle of tilt of the grid normal from the
true vertical. For a tilted grid, there is no true equilibrium;
the tangential component of the force is always finite for all
values of particle density o > Pee The normal component of the
force is zero when

(b, —0g) = (Do - pg) cosa (9)
The value of Py that satisfies EqQ 9 can be considered to be the
critical density Pe for a tilted grid when Py is equal to the

critical density Peo for a horizontal grid. Eq 9 may be written

(oco - of) = (oc - pg) coso (10)

The critical density for a tilted grid may thus be readily
calculated from that of a horizontal grid. Note that pc is
larger than o’ which means that denser objects may be floated
on a tilted grid. This does not mean that the vertical force
is larger; it is actually less than that of a horizontal grid.
The particles are not in equilibrium but are accelerated down-

ward along the inclined plane of the grid.
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Design of Multiple-Gap Magnetic Grids

The magnetic grids described so far are idealized structures.
The problem of building real structures that approximate the ideal
will now be considered.

It is possible to construct a grid of current-carrying wire,
rod or tubing that goes back and forth in a plane in a shape
similar to the grids of early vacuum tubes. Such a grid would be
a direct analog of the grid wires used in the Ampere's-law method
of calculating the fields. It is usually more practical to make
grids of magnetic poles, rather than current-carrying wires, and
only permanent-magnet grids will be described in detail.

The magnetic grid is an alternating array of N and S
parallel, cylindrical magnetic poles in a plane. The poles can
be simple cylinders of iron. The simplest way to create and
maintain the field is to place ferrite permanent magnets between
the bars. Since the grid must have open gaps these magnets are
placed at the ends of the rods. Such grids are multilayer
"sandwiches" of iron and ferrite. This forces the ferrite to
be the same thickness as the gap. This would be a detriment
with an alloy magnet, due to the large demagnetizing field, but
ferrite magnets can be sufficiently hard to be uneffected. The
magnet cross—-sectional area must be large enough to supply the
needed flux. This means that the poles must be enlarged to form
a pad to contact the magnet area. It is desirable to smoothly
join the gap and pad regions through a concentrator section.
Finally, in order to keep the top surface in a single plane, all
depth changes are made on the bottom side of the grid. The
elevation profiles of such grids assume a general shape that we
call a "hunched beam'" or "half-dog-bone." Examples of such grid
profiles are shown in Figure 8.

Several methods have been used to design the proportions of
the grids. Various grades of ferrite are available (Grades 1-8)
depending on the material and its flux density. Grade 1 is weak

and requires a larger pad area than Grade 6 or 7 to produce the
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FIGURE 8 Magnetic grid filter designs.

same flux. The design procedure depends on estimating the
permeance of the iron circuit. Since the grid is a repetitive
structure, only a single section need be calculated. The
permeance of the section is computed using standard formulas for
the different shaped regions of the bars. As in most magnet
design, the biggest uncertainties come in estimating the leakage
and reluctance corrections.

The design is also complicated by the fact that the grid will
be used immersed in ferrofluid. This magnetizable medium acts as
an additional load on the grid. This load alters the magnetic

properties of a dry grid. This effect may be illustrated by
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examining the second quadrant demagnetizing curve for the ferrite
as shown in Figure 9. Demagnetizing curves for several grades of
ferrite are shown. The operating point will be determined by the
intersection of a load line with the curve. The slope of the load
line is -),where A is the "unit permeance' or total permeance times
the magnet length divided by the magnet area. For a dry grid, this
load line passes through the origin. In ferrofluid, the load line
is altered in a complex manner. However, if the ferrofluid is

assumed to be saturated at IS, then it may be shown that the load

OPERATING
POINTS =~ "
B

(KG)

J 1 1
j A ko Ig
DESIGN FIELD —-—-l 79 K

FOR MGF-10
1 N,
_ _ i )}
3 2 Hm (KOe) !
FIGURE 9 Demagnetization curves, load lines and operating

points for ferrite driven magnetic grid filters.
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line is changed to
B = -A [Hm -k, IS/.79po] (11)

where k2 is a reluctance correction factor somewhat greater than
unity and My is the permeability of space. The effect of the
fluid is to shift the load line to the wet load line shown in
Figure 9.

An illustration of a completed and assembled magnetic grid
structure is shown in Figure 10. Note that the grid can be
extended laterally to any distance by adding sections. Various
means, other than the bolts shown in Figure 10, may be used to

hold the assembly together.

Characteristics of Magnetic Grid Filters

Some, but not all, of the grids designed and shown in Figure 8
have been built and tested. Although the grid will be used in
ferrofluid, the simplest tests involve measurements of the magnetic
field in the gaps of a dry grid with a Hall probe. For example,

a probe made to detect and measure the fluid strength of lateral
flux lines was rigidly mounted in a fixed position. The grid to

be tested was mounted on a table that could be accurately translated

OPEN SPACE BETWEEN
GRID MEMBERS

O Ke

FIGURE 10 Drawing of assembled magnetic grid.
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vertically and horizontally with lead screws. By adjusting the
screws, the field could be probed longitudinally along the gaps
or vertically up through the gaps. The middle of the central gap
(for an even number of bars) was taken as the origin.

The measured longitudinal variation of the central field for
an early grid (MGF-2) is shown in Figure 11. Data were taken for
a two-bar grid (single gap) and a four-bar grid (three gaps). The
additional bars lower the field intensely because they are of
opposite polarity and oppose the field from the original pair of
bars. The longitudinal variation of the field is rather slight,
until the concentrator region is reached. Later measurements have

shown that some grid designs have greater longitudinal variation.

H (Oe) e
\

SINGLE GAP

+
//
"é kg ga00f g _f—F /
X n=3 OUTER GAP_, X
\X\X—~x.__,{———)(""x’
MIDDLE GAP
200
X (in)
-4 -3 -2 -1 0 1 2 3 4
1 L ] 1 1 1
MGF-2 GRADE 1
€
FIGURE 11 Measured longitudinal variation of field strength

for 2-bar and 4-bar arrays.
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The theoretical assumption that the grid bar is a surface of
constant magnetomotive force cannot hold in reality for bars
where the gap width is constant. The field will always be lowest
in the center and somewhat higher near the ends. This does not
prevent accurate density separation since the light fraction
flows over the grid surface and passes the central region. The
critical density is determined by this regiom.

The measured vertical variation in the field strength,
relative to the standard central field, is shown in Figure 12.
Data are presented for 1, 3, 5, 7 and 9 gaps. The curves are
quite similar in shape to the theoretical function hn in Figure 4,
The curves oscillate as n increases but quickly converge to a

curve somewhat below the theoretical estimate. Even the predicted

1.0 ¥~x.=
k\x

9 \
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\
-
\
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2 33233
i
C+00OXx

;
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FIGURE 12 Measured vertical field profiles for arrays with
odd number of gaps n. Compare with the calculated
function b, in Figure 4.
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negative values are observed at high levels above the three-gap
grid., The field gradients VHZ have been determined from the same
data. The values were normalized by computing bVHZ/4 HS, where b
is the gap-to-gap dimension of the grid, and are plotted in
Figure 13. These curves can be compared with the function fn in
Figure 5. The measured single gap peak value is somewhat high,

possibly because the poles were not round but were chamfered
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FIGURE 13 Measured vertical gradient profiles for arrays
with odd number of gaps n. Compare with the
calculated function f, in Figure 5.
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Note however, that the peak approaches 0.3

for higher number of gaps, in excellent agreement with the

theory.

A similar procedure has been used to measure the vertical

profiles in each gap of a 10-bar, 9-gap array.

peak field and peak gradient are presented in Figure 14,

The values of the
The field

intensity is noticeably high in the outer gaps and low in the

next-to—outer gaps.

The measured values of the peak gradient show

rather little variation about the mean value of 0.31, These data
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FIGURE 14 Measured central fields and peak gradients for

each gap of a 10-bar array.
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indicate that the theory of ideal grids may be applied to real grids
with confidence. The observed properties and variations of
properties of real grids agree well with the predictions.
The behavior of a magnetic grid in a density separation
depends on the strength of the ferrofluid as well as the strength
of the ferrite and the permenace of the grid structure. The
linear portion of the demagnetization curve for the ferrite may
be expressed as

Bm = Br + . Hm (12)

where the recoil remanence L only slightly exceeds the permeability
of space LI As stated above, the operating point is the inter-
section of the demagnetizing curve with the wet load line, Eq 1ll.
The magnet field, (—Hm) = k2 Hg’ is related to the standard
central field, and this field, HS = 0.81 bV HC, is related to the
magnet period and the critical gradient. The gradient is related
by Eq 3 or Eq 4 to the critical apparent density, and by Eq 10 to
the tilt angle. The net result of combining these relationships
is a characteristic equation for the grid of the form

KI (B_.-kx1)

(p, -~ pg) coso = T 2
¢ £ (ur + X 5b

(13)

where K and k are constants, Is is the saturation magnetization

of the ferrofluid, Br is the remanent magnetization of the ferrite,
B is the recoil remanence, A is the unit permeance, and b is the
period or gap-to-gap spacing.

The values of the constants K and k depend on the units
employed. Numerical values have been determined but so many
assumptions have been used in the derivation that it is preferable
to consider these as empirical parameters to be determined by
experiment,

The form of the characteristic curves calculated by Eq 13
is shown in Figure 15. The remanent magnetization has been taken
to be 3200 G, the value for a Grade 6 ferrite, and the grid period
is 1/2-inch. The density is expressed in specific gravity units

and the fluid strength in gausses. Curves are shown for various
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FIGURE 15 Characteristic curves for various values of unit
permeance. The curves were computed from Eq 13
using B, = 3200 G and b = 1.27 cm. Note the
negative slopes possible for high fluid strength
and high unit permeances.

values of the unit permeance A. For low values of X, the critical
density increases as the fluid strength increases. TFor high
values of A, there is a maximum critical density and the apparent
density decreases with further increases in fluid strength. This
is because the fluid loads the magnetic circuit. The maximum in
apparent density has been observed in experimental tests with
strong fluids and high-permeance grid structures.

A few experiments have been made to directly measure the
buoyant forces on a small object in the gap of a magnetic grid
immersed in ferrofluid. The object was a small tungsten cylinder
connected by a thin rod to an analytical balance. These tests

proved that an object is laterally stable on the central plane of
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the gap and confirmed the general form of the apparent density
profile, Figure 7, for positions above the critical point. A
balance of forces could not be achieved below the critical point
proving that this region is unstable as predicted. The resulting
apparent density profile is shown in Figure 16 by the solid line.
The dashed line indicates the region where a balance of forces
could not be achieved. In these tests, the magnetic grid was
assembled with ferrite magnets with a measured BR=2600G, and the

fluid's intensity of magnetization was measured at 280 gausses.

VERTICAL
DISTANCE
z

24

14
13 GAPS
280 GAUSSES

1.21 g/cc

FIGURE 16 Density profile for a magnetic grid in ferrofluid.
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Density Separations with Magnetic Grid Filters

A laboratory separator was designed specifically for the
experimental study of density separations with the magnetic grid
filter. It consisted essentially of a box in which the magnetic
grid and the ferrofluid were contained, a means of introducing the
material to be separated in the vicinity of the magnetic grid,
and two removable containers to receive the separated fractions.
The grid plane could easily be tilted by rotating the small
laboratory separator through the desired angle.

Density separations were conducted using mixtures of sand
(p = 2.6 g/cc) and zircomia (p = 5.6 g/cc). The particle size
was varied from 2.0 mm down to 74 microns. Several different
mixtures were used. The mixtures to be separated contain 40,

10 and 1 percent by weight of zirconia.

Separation of mixtures containing large particles, 2.0 or
0.5 mm, with 40 percent by weight will be described first.
Figure 17 shows the effect of the intensity of magnetization or
fluid "strength', and of the grid tilt angle, on the composition
of the sink fraction in weight percent of zirconia. For binary
separation, the fluid strength has little influence above a
critical value. For weaker fluids, the apparent density rapidly
approaches the density of sand and allows sand particles to pass
through the grid. For coarse particles, the tilt angle does not
seem to have much influence.

As the particle size is decreased, the separation follows a
more complex behavior. As the tilt angle increases, the quality
of the separation seems to be adversely affected. Small particles
seem to be entrained by their neighboring particles and end up in
the wrong direction: some zirconia particles over the surface of
the grid with the majority of the sand particles, and some sand
particles through the grid with the majority of the zirconia
particles, This behavior seems to result from the hydrodynamics

and surface chemistry of the fine particles in the fluid.
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FIGURE 17 Effect of fluid strength and tilt angle on the

sink fraction for a 407 zirconia - 60% sand mixture.
Particle size: 2.0 to 0.5 mm,

Figure 18 shows the results of separations obtained from
mixtures of fine particles, 250 to 74 microns, containing only
1 percent by weight of zirconia. The amount of zirconia in the
sink fraction now depends on the grid tilt angle. Small tilt
angles yield better separation. The effect of fluid strength
indicates that intermediate fluid strengths are preferred,

specially at small tilt angles.
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FIGURE 18 Effect of fluid strength and tilt angle on the

sink fraction for a 1% zirconia - 99% sand mixture.
Particle size: 250 to 74 microns.

Separation made with mixtures containing various amounts of
zirconia, 40, 10 and 1 percent by weight, can also be used to
demonstrate an important feature of the magnetic grid filters.
Consider a mixture of fine zirconia and sand particles (250 to
74 micron in size) containing only 1 percent by weight of
zirconia. Zirconia is to be recovered from this mixture by
density separation., For the process to be efficient, the sink
fraction must contain a high percentage of zirconia and little
sand, and most of the zirconia should be recovered.

Examination of Figure 18 reveals that the separation of
1 percent zirconia mixture with 100 gauss fluid strength and a
10 degree tilt angle will yield a sink fraction containing
13 percent zirconia. This sink fraction can be separated again
to yield a sink fraction of higher zirconia content and a second

float fraction. This operation can be repeated as many times as
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FEED MIXTURE
1% ZIRCONIA

FIRST FLOAT FRACTION
0.03% ZIRCONIA

FIRST SINK FRACTION
13% ZIRCONIA

SECOND FLOAT FRACTION
4.5% ZIRCONIA

SECOND SINK FRACTION
66% ZIRCONIA

THIRD FLOAT FRACTION
10% ZIRCONIA

THIRD SINK FRACTION
90% ZIRCONIA

FOURTH FLOAT FRACTION
12.6% ZIRCONIA

FOURTH SINK FRACTION
97.5% ZIRCONIA

TILT ANGLE a = 10° FOR ALL STAGES FMF: 100 GAUSSES

FIGURE 19 Schematic diagram of four magnetic grids assembled
in a multistage system.

needed to obtain a final sink fraction containing the desired
concentration of zirconia. Similarly, each resulting float
fraction can be processed again to recover its zirconia content.
For a practical system capable of performing multiple
separation, several magnetic grid filters can be stacked on top
of each other, and aligned end-to-end in a "multistage"” separator,
each stage performing one specific separation. From these and
other experimental measurements we can calculate that, for a

mixture containing 1 percent zirconia, a stack of four grids
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would yield a final concentrated sink fraction containing 97.5
percent by weight zirconia, Figure 19. The first float fraction
contains only 0.03 percent by weight zirconia, and can be
arbitrarily discarded. All other float fractions contain too
much zirconia to be discarded. They can all be further treated
and returned to an upper stage, either individually or combined.
An alternative for treating the float fractions again, is to
extend each stage with one or several grids end-to-end. A
vertical and lateral magnetic grid can be assembled in this
fashion, to develop a multistage system engineered to obtain the

maximum efficiency for a specific separation.

CONCLUSION

Magnetic grids consist of planar arrays of parallel bars of
alternating polarity driven by permanent magnets. Magnetic grids
can be designed by considering ideal grids. They can be constructed
from shaped iron bars and commercial ferrite magnets. Magnetic
measurements qualitatively agree with the theoretical predictions
derived from the study of ideal grids.

Magnetic grids submerged in ferrofluid have demonstrated the
capability to perform binary separations of mixtures of particles
of different densities.

Assembled in a multistage system, magnetic grids are capable
of efficient density separation of mixtures covering a wide range

in size, including fine particles in the micron range.
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