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DENSITY SEPARATION OF SOLIDS 
I N  FERROFLUIDS 

WITH MAGNETIC GRIDS 

Homer Fay 
Union Carbide Corporation 

Linde Div is ion  
Tonawanda Laboratory 
Tonawanda, NY 14150 

and Jean M. Quets 
Union Carbide Corporation 

Linde Division 
Speedway Laboratory 
Speedway, I N  46224 

ABSTRACT 

Nonmagnetic s o l i d s  i n  a superparamagnetic f e r r o f l u i d  are 
subjec ted  t o  body fo rces  propor t iona l  t o  the i n t e n s i t y  of 
magnetization of t he  f l u i d  and the g rad ien t  of the  magnetic 
f i e l d .  
the fo rce  equations,  and s i n c e  the apparent dens i ty  can be  much 
l a r g e r  than the  t r u e  dens i ty ,  i t  i s  poss ib l e  t o  l e v i t a t e  o r  
f l o a t  dense ob jec t s .  Mixtures of s o l i d s  w i t h  a dens i ty  g r e a t e r  
than the  apparent dens i ty  sink whi le  lower dens i ty  s o l i d s  f l o a t .  

An apparent dens i ty  of the f l u i d  can be def ined  from 

I n  p r a c t i c e  i t  i s  d i f f i c u l t  t o  c r e a t e  a uniform g rad ien t  
over a l a r g e  volume and " s ing le  gap" magnetic s epa ra to r s  r e q u i r e  
very l a r g e  magnets o r  have a l imi t ed  throughput. 
problem, "multiple gap" magnetic g r i d s  have been designed. Such 
g r i d s  c o n s i s t  of p lanar  a r r a y s  of p a r a l l e l  b a r s  of a l t e r n a t i n g  
p o l a r i t y ,  d r iven  by permanent magnets. When immersed i n  f e r r o f l u i d ,  
magnetic g r i d s  c r e a t e  nonuniform f i e l d  g rad ien t s  and apparent 
d e n s i t i e s  i n  the  f l u i d .  However, both ana lys i s  and experimental  
measurements show that t h e  g r i d  a c t s  as a b a r r i e r  t o  p a r t i c l e s  
below a c r i t i c a l  dens i ty ,  while permi t t ing  more dense p a r t i c l e s  

To overcome t h a t  
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340 FAY AND QUETS 

t o  f a l l  through t h e  g r i d .  Thus, a magnet ic  g r i d  f i l t e r  can b e  
used as  a h i g h  throughput  b i n a r y  s e p a r a t o r  of s o l i d s  accord ing  
t o  their d e n s i t i e s .  Such f i l t e r s  can b e  cascaded f o r  more complex 
s e p a r a t i o n s .  

S e v e r a l  magnet ic  g r i d  f i l t e r s  have been des igned ,  b u i l t ,  
and t e s t e d .  Magnetic measurements q u a l i t a t i v e l y  a g r e e  w i t h  t h e  
t h e o r e t i c a l  p r e d i c t i o n s .  Experiments wi th  s y n t h e t i c  mixtures  
have demonstrated t h a t  good b i n a r y  s e p a r a t i o n s  can  b e  made. 

INTRODUCTION 

The unusual  p r o p e r t i e s  of " f e r r o f l u i d s "  have been i n t e n s i v e l y  

s t u d i e d  i n  r e c e n t  y e a r s  and were reviewed a t  a n  i n t e r n a t i o n a l  

workshop i n  1977 (1). Such f l u i d s  are  superparamagnet ic  and are 

s t r o n g l y  i n f l u e n c e d  by magnet ic  f i e l d s .  Rosensweig ( 2 - 4 )  and 

o t h e r s  (5-7) have developed p r o c e s s e s  f o r  l e v i t a t i n g  dense 

nonmagnetic o b j e c t s  i n  f e r r o f l u i d s ,  based  on t h e  a t t r a c t i o n  of 

the f l u i d  by t h e  f i e l d .  A f i e l d  g r a d i e n t  can b e  e s t a b l i s h e d  i n  

t h e  f e r r o f l u i d  i n  the gap of a l a r g e  magnet, s o  t h a t  there w i l l  

b e  an  upward buoyant f o r c e  on t h e  o b j e c t  of s u f f i c i e n t  magnitude 

t o  oppose t h e  downward f o r c e  of g r a v i t y .  In t h i s  way one can 

l e v i t a t e  t h e  d e n s e s t  materials on e a r t h .  

S ince  t h e  l e v i t a t i o n  depends on the d e n s i t y ,  i t  i s  p o s s i b l e  

t o  u s e  f e r r o f l u i d s  t o  s e p a r a t e  s o l i d  o b j e c t s  of d i f f e r e n t  d e n s i t i e s .  

Densi ty  s e p a r a t i o n  p r o c e s s e s  based  on f e r r o f l u i d s  have been 

developed by t h e  Avco Corpora t ion  (2-5, 8) and by t h e  U. S .  Bureau 

of Mines (6, 7 ) .  The f e r r o f l u i d  and t h e  o b j e c t s  t o  b e  s e p a r a t e d  

are conta ined  w i t h i n  o r  p a s s  through the gap of a l a r g e  e l e c t r o -  

magnet. The p o l e  p i e c e s  of t h e  magnet are u s u a l l y  shaped t o  c r e a t e  

a n e a r l y  uniform f i e l d  g r a d i e n t  over  a s u b s t a n t i a l  volume. Although 

such p r o c e s s e s  are workable, t h e y  r e q u i r e  expens ive  energy-consuming 

magnets. The material  throughput  is l i m i t e d  because  a l l  of the 

mater ia l  t o  b e  s e p a r a t e d  must p a s s  through the r e l a t i v e l y  s m a l l  gap 

reg ion .  It i s  d i f f i c u l t  t o  "scale-up" the p r o c e s s  w i t h o u t  

i n c r e a s i n g  the s i z e  o r  number of l a r g e  magnets. 
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DENSITY SEPARATION OF SOLIDS 34 1 

In  this paper,  w e  desc r ibe  a d i f f e r e n t  way t o  c r e a t e  the  

requi red  f i e l d  g rad ien t s  by use  of "magnetic grids".  

a r r ays  of p a r a l l e l  po les  of a l t e r n a t i n g  p o l a r i t y  that can be  

completely immersed i n  the f e r r o f l u i d .  Analysis and experiments 

bo th  show that the nonuniform f i e l d  g rad ien t s  near such s t r u c t u r e s  

can a c t  a s  a b a r r i e r  t o  low dens i ty  p a r t i c l e s  whi le  permi t t ing  h igh  

dens i ty  p a r t i c l e s  t o  f a l l  through the g r i d .  The design of magnetic 

g r i d s  and their u s e  i n  p r a c t i c a l  b inary  dens i ty  sepa ra t ion  processes 

w i l l  b e  described. 

There are 

Fe r ro f lu id  P rope r t i e s  

Fe r ro f lu ids  are complex c o l l o i d a l  suspensions of ferromagnetic 

p a r t i c l e s  i n  a l i q u i d  v e h i c l e .  I n  our labora tory  w e  have developed 

methods f o r  making m u l t i - l i t e r  q u a n t i t i e s  of f e r r o f l u i d s  of 

magnetite i n  kerosene, us ing  a v a r i a t i o n  of the pep t i za t ion  process 

of R e i m e r s  (9) .  These f l u i d s  a r e  s t a b l e  and of s u f f i c i e n t  s t r e n g t h  

f o r  u s e  i n  magnetic s epa ra t ion  processes.  Processes f o r  reconcen- 

t r a t i n g  d i l u t e d  f e r r o f l u i d s  have a l s o  been developed i n  our 

labora tory .  

Fe r ro f lu ids  have many f a s c i n a t i n g  c h a r a c t e r i s t i c s ,  bu t  the 

proper ty  of most i n t e r e s t  i n  dens i ty  sepa ra t ions  is t h e  magnetiza- 

t i o n  induced i n  t h e  f l u i d  by a magnetic f i e l d .  The shape of t he  

magnetization curve i s  shown schemat ica l ly  i n  Figure 1, where w e  

p l o t  the i n t e n s i t y  of magnetization I as a func t ion  of the appl ied  

f i e l d  H (10). Af t e r  an i n i t i a l  l i n e a r  region, t h e  i n t e n s i t y  

approaches a s a t u r a t i o n  va lue ,  Is, f o r  r e l a t i v e l y  low va lues  of 

the appl ied  f i e l d .  The curve i s  single-valued and e x h i b i t s  no 

h y s t e r e s i s .  

superparamagnets and t h e  curve should i d e a l l y  follow the Langevin 

func t ion .  

may d e v i a t e  apprec iab ly  from the i d e a l .  

of a f e r r o f l u i d  can be d i r e c t l y  displayed on an osc i l l o scope  w i t h  

a loop-tracer c i r c u i t  p rev ious ly  descr ibed  (11). 

This form of magnetization is c h a r a c t e r i s t i c  of 

Real f l u i d s  have a d i s t r i b u t i o n  of p a r t i c l e  s i z e s  and 

The magnetization curve 
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34 2 FAY AND QUETS 

I 

H 

I 

H 

H ( a h  OR Oe) 
I (TESLAS OR GAUSSESI 

FOR H<H, I =  p o X H  
H >H, 1 = 1 5  

FIGURE 1 Magnet iza t ion  c u r v e  f o r  f e r r o f l u i d .  

A t y p i c a l  kerosene  based f e r r o f l u i d  w i l l  s a t u r a t e  i n  a f i e l d  
3 of ca 10 

The t r u e  d e n s i t y  w i l l  b e  n e a r  t h a t  of water (10 

v i s c o s i t y  ca  4 x I n  the a n a l y s e s  g iven  below, w e  

shall u s u a l l y  assume that t h e  f i e l d  exceeds the c r i t i c a l  v a l u e  and 

t h a t  the magnet iza t ion  i s  s a t u r a t e d .  The f l u i d  s t r e n g t h  is taken 

t o  b e  t h e  s a t u r a t i o n  magnet iza t ion  I . 

Am-' and have  a n  i n t e n s i t y  of magnet iza t ion  of 0.02-0.04 T.  
3 kg m-3) and t h e  

kg rn-' s-l . 

Forces  i n  F e r r o f l u i d s  

A r i g i d  s o l i d  o b j e c t  immersed i n  a f e r r o f l u i d  i n  a magnet ic  

The g r a v i t a t i o n a l  f o r c e  F f i e l d  i s  s u b j e c t e d  t o  s e v e r a l  f o r c e s .  

a c t i n g  downward on the body i s  
g '  
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DENSITY SEPARATION OF SOLIDS 343 

where m 

f l u i d ,  V i s  t h e  volume of t h e  ob jec t ,  p and p f  a r e  t he  d e n s i t i e s  

of the ob jec t  and t h e  f l u i d ,  and g i s  the g r a v i t a t i o n a l  acce lera-  

t i o n .  Due t o  the  presence of t he  f e r r o f l u i d ,  a magnetic f o r c e  

F a l s o  a c t s  on the ob jec t .  This f o r c e  i s  

and mf a r e  t h e  masses of t h e  ob jec t  and the  d isp laced  

- 2 - 0  

A 

m 
1 _L 

Fm = Vo ( Io - I f )  W 

where I and I are the i n t e n s i t i e s  of magnetization of t he  ob jec t  

and the f e r r o f l u i d ,  and W i s  t h e  g rad ien t  of t h e  magnetic f i e l d .  

This fo rce  a c t s  i n  t h e  d i r e c t i o n  of t h e  g rad ien t .  These a r e  the  

only r e l evan t  s t a t i c  f o r c e s ,  bu t  a d d i t i o n a l  fo rces  of hydrodynamic 

r e s i s t a n c e  appear when the  ob jec t  moves through the  f l u i d .  

2 f 

I f  the vec tor  sum of the s t a t i c  fo rces  i s  zero,  the ob jec t  

w i l l  b e  s t a t i o n a r y .  By de f in ing  the v e r t i c a l  p o s i t i v e  d i r e c t i o n  

a s  upward, and not ing  t h a t  g i s  d i r ec t ed  downward, equi l ibr ium 

i s  obtained when 

I 

For Eq 3 t o  be  obeyed, the g rad ien t  must b e  v e r t i c a l  and 

W = VH = dH/dz. The p a r t i c u l a r  va lue  of p t h a t  s a t i s f i e s  Eq 3 

may b e  defined as the  "apparent dens i ty"  of the f e r r o f l u i d .  

the usua l  case  where t h e  ob jec t  i s  nonmagnetic, the apparent 

dens i ty  i s  given by 

A 

z 
I n  

( 4 )  

An ob jec t  of dens i ty  po > pa  w i l l  tend t o  s i n k  i n  the f l u i d ,  

whereas an ob jec t  of dens i ty  p 

- Pa - P f  - If Wz/B 

w i l l  tend t o  f l o a t .  o < 'a 
The concept of apparent dens i ty  can b e  extended t o  reg ions  

where the g rad ien t  has a h o r i z o n t a l  component bu t  only the v e r t i c a l  

component i s  used i n  Eq  4 .  

Analysis of Simple Grids 

A magnetic g r i d  is  a p lanar  a r r a y  of p a r a l l e l  b a r s  of 

a l t e r n a t i n g  magnetic p o l a r i t y .  The cons t ruc t ion  of real  magnetic 

g r i d s  i s  described i n  a la ter  s e c t i o n .  The magnetic f i e l d  around 
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344 FAY AND QUETS 

r e a l  g r i d s  i s  complex, bu t  can be approximated by considering i d e a l  

g r i d s ,  where t h e  poles  a r e  represented  by s m a l l  semi- inf in i te  

cy l inders  o r  w i r e s .  

The problem of determining t h e  s p a t i a l  d i s t r i b u t i o n  of the 

f i e l d  near  an a r r a y  of c y l i n d r i c  magnetic poles i s  analogous t o  

f ind ing  the  f i e l d  near current--carrying w i r e s ,  which may be  

ca lcu la ted  by Ampere’s law. A t  a given poin t  i n  space,  t he  f i e l d  

produced by each w i r e  i s  found and the  vec tor  sum gives  the  t o t a l  

f i e l d .  The method y i e l d s  a n a l y t i c  so lu t ions  f o r  simple cases  and 

machine computations may be  used f o r  more complex ar rays .  The 

gradien t  of the  magnitude of t he  f i e l d  may be  found by d i f f e ren -  

t i a t i o n .  

For the  t r i v i a l  case  of a s i n g l e  w i r e  car ry ing  a cu r ren t  J ,  

the  f i e l d  a t  a d i s t ance  r i s  H = J / ~ I T ~ .  

W = - J /2ar  , d i r e c t e d  r a d i a l l y .  If such a s i n g l e  w i r e  o r  po le  

were imnersed i n  f e r r o f l u i d ,  t he  g rad ien t  would a c t  t o  r epe l  

nonmagnetic o b j e c t s  from the  w i r e .  

The next s imples t  case  i s  two wires separa ted  by a d i s t ance  

The g rad ien t  i s  
2 

2a, car ry ing  equal  bu t  oppos i te ly  d i r e c t e d  cu r ren t s ,  J .  The 

magnitude of t he  f i e l d  i s  found t o  be 

h (5) 
J = -  1 

aa L [(y + 1)’ + z 21 L(y - 1)’ + z21 ] va 
H = J  

where y and z a r e  the  d i s t ances  from the  cen te r  between w i r e s ,  i n  

u n i t s  of a. High 

values of H occur near t he  w i r e s  and low va lues  f a r  away, wi th  a 

saddle  poin t  a t  the o r i g i n .  

expressed a s  

A map of t h e  func t ion  h is  shown i n  Figure 2 .  

The magnitude of t he  g rad ien t  may be 

A map of the  func t ion  f i s  shown i n  Figure 3 .  

a t  the o r i g i n  and a t  i n f i n i t y .  

g rad ien t  vanishes a t  z = 0 .  

where the  contours c i r c l e  each w i r e .  

around both w i r e s .  

The g rad ien t  vanishes 

The vertical  component of t h e  

High va lues  occur near t he  w i r e s  

Lower valued contours map 

There is  a c r i t i c a l  va lue  (f=.325) which 
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DENSITY SEPARATION OF SOLIDS 345 

FIGURE 2 Map of the magnetic f i e l d  i n t e n s i t y  around two 
conductors. Dimensions a r e  r e l a t i v e  t o  a ,  where 
2a i s  the d i s t ance  between w i r e s .  

s epa ra t e s  the two regimes. This i s  the  least of t h e  h igh  va lues  

of f encountered on any pa th  between the w i r e s .  If the w i r e  p a i r  

were i m e r s e d  i n  f e r r o f l u i d  only ob jec t s  that could surmount this 

g rad ien t  could pass  between the wires. 

Complete a n a l y t i c  s o l u t i o n s  can b e  derived f o r  l a r g e r  a r r a y s ,  

b u t  they are cumbersome and machine ca l cu la t ions  a r e  p re fe r r ed .  

However, there are s p e c i a l  pos i t i ons  where the ana lys i s  is g r e a t l y  

s impl i f i ed  by symmetry. The v e r t i c a l  c e n t r a l  plane d iv id ing  an 

a r r a y  of w i r e s  i n  ha l f  i s  such a s p e c i a l  pos i t i on .  For an even 

number of w i r e s  and an odd number of gaps, t he  problem degenera tes  

t o  computing t h e  cumulative e f f e c t  of p a i r s  of wires spaced a t  

p rogress ive ly  g r e a t e r  d i s t ances .  

given by o s c i l l a t i n g  series of term 

The f i e l d  and f i e l d  g rad ien t  are 
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346 FAY AND QUETS 

FIGURE 3 Map of the  magnitude of t he  f i e l d  g rad ien t  around 
two conductors. Dimensions are the  same a s  
Figure 2 .  

where z i s  the  v e r t i c a l  d i s t a n c e  above the g r i d  i n  u n i t s  of a .  The 

gradien t  i s  v e r t i c a l  on this plane; t h e r e  i s  no h o r i z o n t a l  component. 

While the  f i e l d  func t ion  h i s  symmetric about the g r i d ,  the g rad ien t  

func t ion  f depends on the s i g n  of z and w i l l  change from upward t o  

downward i n  pass ing  through the p lane  of t h e  g r i d .  The func t ions  h 

and f a r e  p l o t t e d  i n  F igure  4 and Figure 5. The h func t ion  i s  

n 

n 

n 
n n 
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DENSITY SEPARATION OF SOLIDS 347 

n 

FIGURE 4 

0 .2 .4 .6 .8 1.0 .2 .4 .6 .8 2.0 .2 .4 .6 .8 3.0 
7. 

P l o t  of t h e  f i e l d  func t ion  hn f o r  an  a r r a y  of n+l 
conductors and n gaps. The d i s t ance  z i s  i n  u n i t s  
of a ,  t he  ha l f - spac ing  of t he  conductors.  

d i sp laced  a s  the  number of gaps n inc reases ,  due t o  t h e  o s c i l l a t i n g  

s e r i e s ,  and can even have nega t ive  va lues .  The f func t ion  is  l e s s  

e f f e c t e d  by t h e  number of w i r e s ,  The p o s i t i o n  of t h e  maximum is  

e s s e n t i a l l y  unchanged and t h e  peak va lue  i s  nea r ly  cons t an t .  

is  important i n  t h e  sepa ra t ion  processes  t o  be  descr ibed ,  because i t  

means t h a t  t h e  l o c a l  f o r c e s  do not depend apprec iab ly  on the  number 

of w i r e s  o r  po les .  

n 

This 

For an  i n f i n i t e  a r r a y  of w i re s ,  t h e  va lue  of h a t  t h e  o r i g i n  

approaches n / 4 .  It i s  convenient t o  de f ine  the  maximum va lue  of H 

f o r  a s i n g l e  p a i r  of w i r e s  as H t h e  s tandard  c e n t r a l  f i e l d ,  which 

corresponds t o  h = 1. For an i n f i n i t e  a r r a y  t h e  c e n t r a l  f i e l d  H 

w i l l  be (n /4 )H . The c r i t i c a l  g rad ien t  corresponds t o  t h e  maximum 

va lue  of f . It occurs a t  a level c lose  t o  z = 1 / n  = .58, which 

i s  the  exac t  va lue  f o r  a s i n g l e  gap. 

he igh t  v a r i e s  wi th  n accord ing  t o  the  t a b l e .  

n 

S’ 

n 

S 

n 
The va lue  of f n  a t  this 
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348 FAY AND QUETS 

n 

1 
3 
5 
7 

- f Cat z = l / f i )  

.325 

.305 

.309 

.308 

-n 

m .30823 

The convergence i s  r ap id  and f o r  a l l  p r a c t i c a l  purposes, t h a t  peak 

va lue  i s  cons tan t  and equal  t o  .31. 

the  va lue  n i n d i c a t e s  that each gap of a l a r g e  g r i d  acts approxi- 

The i n s e n s i t i v i t y  of f n  t o  

mately t h e  same. 

Machine c a l c u l a t i o n s  have been used t o  f i n d  t h e  magnetic f i e l d ,  

the  magnitude of t he  f i e l d ,  the g rad ien t  of the f i e l d ,  the magnitude 

FIGURE 5 P l o t  of t he  g rad ien t  func t ion  f n  f o r  an a r r ay  of 
n+l conductor and n gaps. The d i s t a n c e  z is the  
same a s  i n  Figure 4 .  Note t h a t  t he  peak pos i t i ons  
and peak he igh t s  are near ly  i d e n t i c a l .  
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DENSITY SEPARATION OF SOLIDS 349 

of the  g rad ien t  and the  h o r i z o n t a l  and ver t ica l  components of the 

g rad ien t  around magnetic g r i d  s t r u c t u r e s .  The v e r t i c a l  component 

of the  g rad ien t  determines the apparent dens i ty  according t o  Eq 4 .  

A contour map of the  v e r t i c a l  component of the gradien t  i n  the  

reg ion  above f i v e  w i r e s  of a l a r g e  a r r ay  is  shown i n  Figure 6. 

Low va lues  map a s  wavy sheets over the gr id ;  h igh  va lues  map as 

lobes  over t he  w i r e s .  A c r i t i c a l  va lue  separates the two regimes. 

The c r i t i c a l  contour has sadd le  po in t s  on the v e r t i c a l  p lanes  

midway between t h e  w i r e s .  These po in t s  r ep resen t  the h ighes t  va lue  

on these p lanes  and are c a l l e d  t h e  c r i t i c a l  po in t s .  A s i m i l a r  map 

could be drawn below the plane  of t he  wires, bu t  these f o r c e s  are 

d i r e c t e d  downward and cannot produce l e v i t a t i o n .  

Various computational methods have been used t o  determine the  

magnetic f i e l d s  near  shaped poles  of f i n i t e  dimensions. Corners 

and sharp  edges on the poles  c r e a t e  l o c a l  pe r tu rba t ions  of t he  f i e l d s  

but ,  i n  genera l ,  t he  pole  shape has a r e l a t i v e l y  smal l  e f f e c t  on the  

contour maps. Rounded poles produce ver t ica l  fo rces  q u i t e  

, 

HORIZONTAL DISTANCES 
ARBITRARY UNITS 

LATERAL 
4 c 

1K 
2K 

GAP GAP GAP GAP GAP GAP 
CENTER CENTER CENTER CENTER CENTER CENTER 

FIGURE 6 Contour map of t h e  v e r t i c a l  fo rces  near  f i v e  w i r e s  
of a l a r g e  a r r ay .  The c r i t i c a l  po in t s  occur a t  b 
and s i m i l a r  po in t s .  
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FAY AND QUETS 350 

s i m i l a r  t o  F i g u r e  6,  b u t  the s i z e  of the p o l e  must b e  accomo-  

da ted .  

Densi ty  S e p a r a t i o n  i n  Nonuniform Gradien ts  

An o r d i n a r y  f l u i d  of d e n s i t y  p f  may b e  used t o  s e p a r a t e  s o l i d s .  

Objec ts  more dense than  pf  s i n k  while o b j e c t s  less dense than  pf  

f l o a t .  For a f e r r o f l u i d  t h e  s e p a r a t i o n  depends on t h e  a p p a r e n t  

d e n s i t y  p 

g r a d i e n t  by Eq 4 .  

over  i t s  volume. It is  n a t u r a l  t o  want t o  make p uniform over  

an  a p p r e c i a b l e  volume t o  make i t  analogous t o  normal f l u i d s .  

This r e q u i r e s  that  t h e  v e r t i c a l  component of t h e  g r a d i e n t  b e  

uniform. S p e c i a l l y  shaped p o l e  p i e c e s  have been  used t o  create 

r e g i o n s  where the g r a d i e n t  i s  n e a r l y  uniform (8).  This  i s  

unnecessary.  Dens i ty  s e p a r a t i o n s  can  b e  performed i n  t h e  

nonuniform g r a d i e n t s  produced by magnet ic  g r i d s .  

which depends on the ve r t i ca l  component of t h e  a' 
The d e n s i t y  of a n  o r d i n a r y  f l u i d  i s  uniform 

a 

The d e n s i t y  s e p a r a t i o n  p r o c e s s  can b e  d e s c r i b e d  w i t h  the a i d  

of t h e  apparent  d e n s i t y  p r o f i l e  shown i n  F i g u r e  7 .  This  i s  a p l o t  

of t h e  apparent  d e n s i t y ,  on the v e r t i c a l  p l a n e  midway between a 

p a i r  of p o l e s  o r  w i r e s ,  v e r s u s  t h e  h e i g h t  above t h e  g r i d .  The 

shape of the curve  can b e  determined from the f u n c t i o n  f of 

F i g u r e  5.  The maximum apparent  d e n s i t y  o c c u r s  a t  t h e  c r i t i c a l  

p o i n t  and i s  termed t h e  c r i t i c a l  d e n s i t y  p . A heavy o b j e c t  of 

d e n s i t y  p 

any v a l u e s  of t h e  a l t i t u d e  z. Such an  o b j e c t  w i l l  s i n k  and p a s s  

through the g r i d .  The l i n e  r e p r e s e n t i n g  t h e  d e n s i t y  of a l i g h t  

o b j e c t  p < p c  w i l l  i n t e r s e c t  t h e  a p p a r e n t  d e n s i t y  curve  twice.  

The upper i n t e r s e c t i o n  i s  a p o i n t  of s t a b l e  e q u i l i b r i u m  b u t  t h e  

lower p o i n t  i s  u n s t a b l e .  The o b j e c t  cannot  rest h e r e  b u t  must 

s i n k  o r  f l o a t .  I n  f a c t ,  t h e r e  are no p o s i t i o n s  of s t a b l e  

e q u i l i b r i u m  below t h e  c r i t i c a l  p o i n t  f o r  o b j e c t s  d e n s e r  t h a n  p 

This  i s  s i g n i f i c a n t  because  i t  means t h a t  o b j e c t s  cannot c l o g  

t h e  g r i d .  

n 

> p, w i l l  n o t  i n t e r s e c t  t h e  apparent  d e n s i t y  curve  f o r  

f '  
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DENSITY SEPARATION OF SOLIDS 35 1 

/--- 

D 
L 

STABLE 

F 

UNSTABLE I 
e e c  

FIGURE 7 The apparent  d e n s i t y  p r o f i l e .  I n t e r s e c t i o n s  of 
c o n s t a n t  d e n s i t y  l i n e s  y i e l d  s t a b l e  e q u i l i b r i u m  
p o i n t s  above t h e  c r i t i c a l  p o i n t  and u n s t a b l e  
e q u i l i b r i u m  p o i n t s  below t h e  c r i t i c a l  p o i n t .  

Above t h e  c r i t i c a l  p o i n t  o b j e c t s  of d e n s i t y  between p and 
f 

p, w i l l  f l o a t  a t  a l e v e l  where t h e i r  d e n s i t y  e q u a l s  p . 
i t  i s  p o s s i b l e  t o  c o n s i d e r  c o l l e c t i n g  p a r t i c l e s  a t  d i f f e r e n t  

h e i g h t s  t o  o b t a i n  a f r a c t i o n a t i o n  accord ing  t o  d e n s i t y ,  i t  i s  

more p r a c t i c a l  t o  u s e  t h e  g r i d  as a b i n a r y  s e p a r a t o r .  I n  

o p e r a t i o n ,  p a r t i c l e s  are f e d  t o  t h e  g r i d  n e a r  b u t  above t h e  

h e i g h t  of t h e  c r i t i c a l  p o i n t s .  P a r t i c l e s  less dense than  p 

While 
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352 FAY AND QUETS 

w i l l  f l o a t  above the  g r i d  where they can be  removed l a t e r a l l y .  

The v e r t i c a l  components of i n i t i a l  k i n e t i c  energy of t he  p a r t i c l e s  

must be  kept  s m a l l  s o  t h a t  t he  p a r t i c l e s  cannot puncture the  

b a r r i e r .  P a r t i c l e s  more dense than p w i l l  s i n k  through the  g r i d  

where they can be co l l ec t ed  and removed. 

It has  been assumed t h a t  the g r i d  is hor i zon ta l .  T i l t i n g  of 

the  g r i d  plane can b e  b e n e f i c i a l  because i t  permits using some of 

t he  g r a v i t a t i o n a l  f o r c e  t o  t r a n s p o r t  material over t he  g r i d .  I t  

is  convenient t o  r o t a t e  the coord ina te  frame w i t h  the g r i d  and 

then determine t h e  f o r c e s  normal t o  and perpendicular  t o  the  g r i d .  

The v e r t i c a l  component of the g rad ien t ,  Figure 6 ,  i s  now the 

normal component. The g r a v i t a t i o n a l  f o r c e  may b e  decomposed i n t o  

t angen t i a l  and normal ( t o  the g r id )  components by rep lac ing  g i n  

Eq 1 wi th  g sincl and -g cosa,  where g i s  t h e  s c a l a r  a c c e l e r a t i o n  

of g rav i ty  and cl i s  the angle of t ilt  of t h e  g r i d  normal from the  

t r u e  v e r t i c a l .  For a t i l t e d  g r i d ,  t h e r e  i s  no t r u e  equilibrium; 

the t a n g e n t i a l  component of the f o r c e  i s  always f i n i t e  f o r  a l l  

va lues  of p a r t i c l e  dens i ty  p 

fo rce  i s  zero when 

9 

> p f .  The normal component of t he  

(Pa - P,) = (Po  - Pf) coscl (9) 

The value of p t h a t  s a t i s f i e s  Eq 9 can be considered t o  be  the  

c r i t i c a l  dens i ty  p f o r  a t i l t e d  g r i d  when p is  equal  t o  the  

c r i t i c a l  dens i ty  p f o r  a h o r i z o n t a l  g r i d .  Eq 9 may be  w r i t t e n  
a 

co 
(Pco - P,) = (Pc - P,) cosa (10) 

The c r i t i c a l  dens i ty  f o r  a t i l t e d  g r i d  may thus  be r e a d i l y  

ca lcu la ted  from that of a h o r i z o n t a l  g r id .  Note t h a t  p i s  

l a r g e r  than p which means t h a t  denser ob jec t s  may be f l o a t e d  

on a t i l t e d  g r i d .  This does no t  mean t h a t  t he  v e r t i c a l  f o r c e  

i s  l a r g e r ;  i t  i s  a c t u a l l y  less than that of a h o r i z o n t a l  g r i d .  

The p a r t i c l e s  are not  i n  equi l ibr ium bu t  are acce le ra t ed  down- 

ward along the  inc l ined  p lane  of t he  g r i d .  

co’ 
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DENSITY SEPARATION OF SOLIDS 353 

Design of Multiple-Gap Magnetic Grids 

The magnetic g r i d s  descr ibed  so fa r  are i d e a l i z e d  s t r u c t u r e s .  

The problem of bu i ld ing  real s t r u c t u r e s  t h a t  approximate t h e  i d e a l  

w i l l  now be considered. 

It  i s  poss ib l e  t o  cons t ruc t  a g r i d  of cur ren t -car ry ing  w i r e ,  

rod o r  tubing t h a t  goes back and f o r t h  i n  a p lane  i n  a shape 

s i m i l a r  t o  t h e  g r i d s  of e a r l y  vacuum tubes.  Such a g r i d  would be  

a d i r e c t  analog of t h e  g r i d  w i r e s  used i n  t h e  Ampere's-law method 

of c a l c u l a t i n g  the  f i e l d s .  It i s  usua l ly  more p r a c t i c a l  t o  make 

g r i d s  of magnetic po les ,  rather than cur ren t -car ry ing  w i r e s ,  and 

only permanent-magnet g r i d s  w i l l  be  descr ibed  i n  d e t a i l .  

The magnetic g r i d  i s  an a l t e r n a t i n g  a r r a y  of N and S 

p a r a l l e l ,  c y l i n d r i c a l  magnetic po les  i n  a p lane .  The poles  can 

be  simple cy l inde r s  of i r o n .  

main ta in  t h e  f i e l d  i s  t o  p l ace  f e r r i t e  permanent magnets between 

the ba r s .  Since t h e  g r i d  must have open gaps these magnets a r e  

placed a t  the  ends of t h e  rods .  Such g r i d s  a r e  mul t i l aye r  

"sandwiches" of i r o n  and f e r r i t e .  This f o r c e s  the  f e r r i t e  t o  

be  t h e  same th ickness  as the gap. This would b e  a de t r iment  

w i th  an  a l l o y  magnet, due t o  t h e  l a r g e  demagnetizing f i e l d ,  b u t  

f e r r i t e  magnets can be s u f f i c i e n t l y  hard t o  b e  unef fec ted .  The 

magnet c ros s - sec t iona l  a r e a  must be  l a r g e  enough t o  supply the 

needed f l u x .  This means that the poles  must be  en larged  t o  form 

a pad t o  con tac t  the magnet area. It i s  d e s i r a b l e  t o  smoothly 

j o i n  the gap and pad r eg ions  through a concent ra tor  s e c t i o n .  

F i n a l l y ,  i n  order  t o  keep the top s u r f a c e  i n  a s i n g l e  p lane ,  a l l  

depth changes are made on t h e  bottom s i d e  of the g r i d .  The 

e l e v a t i o n  p r o f i l e s  of such g r i d s  assume a gene ra l  shape t h a t  w e  

c a l l  a "hunched beam" o r  "half-dog-bone." Examples of such g r i d  

p r o f i l e s  are shown i n  F igure  8. 

The s imples t  way t o  c r e a t e  and 

Severa l  methods have been used t o  design t h e  propor t ions  of 

the g r ids .  Various grades of f e r r i t e  a r e  a v a i l a b l e  (Grades 1-8) 

depending on the  material and i t s  f l u x  dens i ty .  Grade 1 i s  weak 

and r equ i r e s  a l a r g e r  pad a r e a  than  Grade 6 o r  7 t o  produce t h e  
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F I G U R E  8 Magnetic g r i d  f i l t e r  d e s i g n s .  

same f l u x .  The d e s i g n  procedure  depends on e s t i m a t i n g  t h e  

permeance of t h e  i r o n  c i r c u i t .  S i n c e  the g r i d  i s  a r e p e t i t i v e  

s t r u c t u r e ,  o n l y  a s i n g l e  s e c t i o n  need b e  c a l c u l a t e d .  The 

permeance of t h e  s e c t i o n  i s  computed u s i n g  s t a n d a r d  formulas  f o r  

t h e  d i f f e r e n t  shaped r e g i o n s  of the b a r s .  A s  i n  most magnet 

des ign ,  the b i g g e s t  u n c e r t a i n t i e s  come i n  e s t i m a t i n g  t h e  l e a k a g e  

and r e l u c t a n c e  c o r r e c t i o n s .  

The d e s i g n  i s  a l s o  compl ica ted  by the f a c t  tha t  t h e  g r i d  w i l l  

be  used immersed i n  f e r r o f l u i d .  T h i s  magnet izable  medium a c t s  as 

an a d d i t i o n a l  load  on t h e  g r i d .  T h i s  l o a d  a l t e r s  t h e  magnet ic  

p r o p e r t i e s  of  a d r y  g r i d .  T h i s  e f f e c t  may b e  i l l u s t r a t e d  by 
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DENSITY SEPARATION OF SOLIDS 355 

examining t h e  second quadrant demagnetizing curve f o r  the  f e r r i t e  

as shown i n  Figure 9 .  Demagnetizing curves f o r  several grades of 

f e r r i t e  a r e  shown. The opera t ing  po in t  w i l l  be determined by t h e  

i n t e r s e c t i o n  of a load l i n e  with the  curve. 

l i n e  is  -A,where X is  the  “ u n i t  permeance” o r  t o t a l  permeance t i m e s  

t he  magnet length  divided by the  magnet area. For a dry g r id ,  t h i s  

load l i n e  passes  through the  o r i g i n .  

i s  a l t e r e d  i n  a complex manner. 

assumed t o  be s a t u r a t e d  a t  I 

The s lope  of t he  load 

In  f e r r o f l u i d ,  t h e  load l i n e  

However, i f  t he  f e r r o f l u i d  i s  

then i t  may be shown t h a t  t he  load 
S ’  

-3 
I 1 

-1 
H, (KOe) 

- 4  

- 2  

B 
(KG) 

1 

A k 2  ‘s 
.79 !+ 
- 

0 

FIGURE 9 Demagnetization curves, load l i n e s  and opera t ing  
po in t s  f o r  f e r r i t e  dr iven  magnetic grid f i l t e r s .  
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356 FAY AND QUETS 

l i n e  i s  changed t o  

(11) 1 B = -?I [ Hm - k2 Is/.79po 

where k2  i s  a r e luc t ance  c o r r e c t i o n  f a c t o r  somewhat g r e a t e r  than  

un i ty  and p i s  t h e  permeabi l i ty  of space.  The e f f e c t  of t h e  

f l u i d  i s  to s h i f t  t h e  load l i n e  t o  t h e  w e t  load l i n e  shown i n  

Figure 9 .  

An i l l u s t r a t i o n  of a completed and assembled magnetic g r i d  

s t r u c t u r e  i s  shown i n  F igure  10. Note t h a t  t he  g r i d  can be  

extended l a t e r a l l y  t o  any d i s t a n c e  by adding s e c t i o n s .  Various 

means, o the r  than t h e  b o l t s  shown i n  F igure  10, may b e  used t o  

hold the  assembly toge the r .  

C h a r a c t e r i s t i c s  of Magnetic Grid F i l t e r s  

Some, b u t  no t  a l l ,  of t h e  g r i d s  designed and shown i n  F igure  8 

have been b u i l t  and t e s t e d .  Although t h e  g r i d  w i l l  be used i n  

f e r r o f l u i d ,  t h e  s imples t  tests involve  measurements of t he  magnetic 

f i e l d  i n  the  gaps of a dry  g r i d  wi th  a H a l l  probe. For example, 

a probe made t o  d e t e c t  and measure t h e  f l u i d  s t r e n g t h  of l a t e r a l  

f l u x  l i n e s  was r i g i d l y  mounted i n  a f i x e d  p o s i t i o n .  The g r i d  t o  

be t e s t e d  w a s  mounted on a t a b l e  t h a t  could be accu ra t e ly  t r a n s l a t e d  

OPEN SPACE BETWEEN 
GRID MEMBERS 

FIGURE 10 Drawing of assembled magnetic g r i d .  
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DENSITY SEPARATION OF SOLIDS 357 

v e r t i c a l l y  and ho r i zon ta l ly  wi th  lead  screws. By ad jus t ing  the  

screws, t h e  f i e l d  could b e  probed long i tud ina l ly  along the gaps 

o r  v e r t i c a l l y  up through the  gaps,  The middle of t he  c e n t r a l  gap 

( f o r  an even number of ba r s )  w a s  taken a s  the  o r i g i n .  

The measured long i tud ina l  v a r i a t i o n  of the  c e n t r a l  f i e l d  f o r  

an e a r l y  g r i d  (MGF-2) i s  shown i n  Figure 11. Data were taken f o r  

a two-bar g r i d  ( s i n g l e  gap) and a four-bar g r i d  ( t h r e e  gaps).  The 

a d d i t i o n a l  ba r s  lower the  f i e l d  in t ense ly  because they a r e  of 

oppos i te  p o l a r i t y  and oppose the  f i e l d  from the  o r i g i n a l  p a i r  of 

ba r s .  The long i tud ina l  v a r i a t i o n  of the  f i e l d  is  rather s l i g h t ,  

u n t i l  t he  concentrator reg ion  i s  reached. La te r  measurements have 

shown t h a t  some g r i d  designs have g r e a t e r  l ong i tud ina l  v a r i a t i o n .  

z 

200 

-4 -3 -2 -1  0 
I 1 I I 

X f X  

SINGLE GAP 

MIDDLE GAP 

X (in) 

1 2 3 4 
I 1 I t , 

FIGURE 11 Measured long i tud ina l  v a r i a t i o n  of f i e l d  s t r e n g t h  
f o r  2-bar and 4-bar a r r ays .  
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358 FAY AND QUETS 

The t h e o r e t i c a l  assumption t h a t  t he  g r i d  ba r  i s  a su r face  of 

cons tan t  magnetomotive f o r c e  cannot hold i n  r e a l i t y  f o r  b a r s  

where the gap width is  cons tan t .  

i n  t he  cen te r  and somewhat h igher  near the  ends. This does not  

prevent accura te  dens i ty  sepa ra t ion  s i n c e  the  l i g h t  f r a c t i o n  

flows over the  g r i d  su r face  and passes the  c e n t r a l  reg ion .  The 

c r i t i c a l  dens i ty  is  determined by t h i s  region. 

The f i e l d  w i l l  always b e  lowest 

The measured v e r t i c a l  v a r i a t i o n  i n  the  f i e l d  s t r e n g t h ,  

r e l a t i v e  t o  the  s tandard  c e n t r a l  f i e l d ,  i s  shown i n  Figure 1 2 .  

Data a r e  presented  f o r  1, 3 ,  5, 7 and 9 gaps. The curves are 

q u i t e  s imi l a r  i n  shape t o  the t h e o r e t i c a l  func t ion  h 

The curves o s c i l l a t e  as n inc reases  bu t  qu ick ly  converge t o  a 

curve somewhat below the  t h e o r e t i c a l  es t imate .  Even the  p red ic t ed  

i n  F igure  4 .  
n 

z 

FIGURE 12 Measured v e r t i c a l  f i e l d  p r o f i l e s  f o r  a r r ays  with 
odd number of gaps n. Compare wi th  the  ca l cu la t ed  
func t ion  hn i n  Figure 4 .  
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359 DENSITY SEPARATION OF SOLIDS 

nega t ive  va lues  are observed a t  h igh  l e v e l s  above the  three-gap 

g r i d .  

da t a .  

i s  the  gap-to-gap dimension of the  g r i d ,  and are p l o t t e d  i n  

F igure  13. These curves can b e  compared wi th  t h e  func t ion  f i n  

F igure  5. 

poss ib ly  because t h e  po le s  w e r e  no t  round b u t  were chamfered 

The f i e l d  g rad ien t s  VHZ have been determined from t h e  same 

The va lues  were normalized by computing bVH I 4  H , where b 
2 s  

n 
The measured s i n g l e  gap peak va lue  i s  somewhat h igh ,  

0 .2 .4 .6 .0 

X 

\ 
X 

\ 

l:o . .6 .0 2 
2 

i 
n = l  X 
n = 3  0 
n = 5  0 
n = ?  + 
n = 9  0 

.2 .4 .6 .I 

FIGURE 13 Measured v e r t i c a l  g rad ien t  p r o f i l e s  f o r  a r r a y s  
wi th  odd number of gaps n. Compare wi th  t h e  
c a l c u l a t e d  func t ion  f n  i n  F igure  5. 
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.8 0 
HdHs 

MEAN 
.719 0 -  .7 

0 

.6 

.5 

bVHrnax. .4 

4 Hs 

MEAN + , + 
+ .3- ,313 

square  s e c t i o n s .  Note however, t h a t  t h e  peak approaches 0 .3  

f o r  h i g h e r  number of gaps,  i n  e x c e l l e n t  agreement w i t h  t h e  

theory .  

A s i m i l a r  p rocedure  h a s  been  used  t o  measure t h e  v e r t i c a l  

p r o f i l e s  in each  gap of a 10-bar, 9-gap a r r a y .  The v a l u e s  of the 

peak f i e l d  and peak g r a d i e n t  are p r e s e n t e d  i n  F i g u r e  14.  The f i e l d  

i n t e n s i t y  i s  n o t i c e a b l y  h i g h  i n  t h e  o u t e r  gaps and low i n  t h e  

next- to-outer  gaps.  The measured v a l u e s  of the peak g r a d i e n t  show 

rather l i t t l e  v a r i a t i o n  about  the mean v a l u e  of 0.31. These d a t a  

- RANGE 

0 I ,115 
() 0 

0 
16% 

- 

- 

- 
RANGE 

+ I ,041 

13% 
+ + +  

-2 -1 
nIn nmn n 
V ' V  U ' W  w 

GRID MGF-2 

1 2 Y (in) 
n n,n n, v W ' W  wee> * 

GRADE 1 

FIGURE 14 Measured c e n t r a l  f i e l d s  and peak g r a d i e n t s  f o r  
each gap of a 10-bar a r r a y .  
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DENSITY SEPARATION OF SOLIDS 36 1 

i n d i c a t e  t h a t  t he  theory of i d e a l  g r i d s  may be  appl ied  t o  real  g r i d s  

w i t h  confidence. The observed p rope r t i e s  and v a r i a t i o n s  of 

p rope r t i e s  of r e a l  g r i d s  agree  w e l l  wi th  the p red ic t ions .  

The behavior of a magnetic g r i d  i n  a dens i ty  sepa ra t ion  

depends on the s t r e n g t h  of the f e r r o f l u i d  as w e l l  a s  the s t r e n g t h  

of t h e  f e r r i t e  and the permenace of the g r i d  s t r u c t u r e .  The  

l i n e a r  po r t ion  of t he  demagnetization curve f o r  the f e r r i t e  may 

be  expressed as 

where the  r e c o i l  remanence p only s l i g h t l y  exceeds the  permeabi l i ty  

of space p . A s  s t a t e d  above, the opera t ing  po in t  i s  the i n t e r -  

s ec t ion  of t he  demagnetizing curve w i t h  the  w e t  load l i n e ,  Eq 11. 

The magnet f i e l d ,  (-H ) = k H i s  r e l a t e d  t o  the  s tandard  

c e n t r a l  f i e l d ,  and t h i s  f i e l d ,  Hs = 0.81 bV Hc,  is  r e l a t e d  t o  the  

magnet per iod  and the  c r i t i c a l  g rad ien t .  The gradien t  i s  r e l a t e d  

by Eq 3 o r  Eq 4 t o  t he  c r i t i c a l  apparent dens i ty ,  and by Eq 10 t o  

the  tilt angle.  The n e t  r e s u l t  of combining these  r e l a t i o n s h i p s  

is  a c h a r a c t e r i s t i c  equat ion  f o r  t h e  g r i d  of the form 

r 

m 2 g’  

K Is (Br - kX Is) 
(11, + b 

(Pc - p ) cosa = f 

where K and k a r e  cons t an t s ,  I i s  the  s a t u r a t i o n  magnetization 

of t he  f e r r o f l u i d ,  B i s  t h e  remanent magnetization of t he  f e r r i t e ,  

pr i s  the  r e c o i l  remanence, X i s  the  u n i t  permeance, and b i s  the  

per iod  o r  gap-to-gap spacing. 

The va lues  of the cons tan ts  K and k depend on the u n i t s  

Numerical values have been determined bu t  so many employed. 

assumptions have been used i n  the  de r iva t ion  t h a t  i t  i s  p re fe rab le  

t o  consider these as empir ica l  parameters t o  be determined by 

experiment. 

The form of t h e  c h a r a c t e r i s t i c  curves ca l cu la t ed  by E q  13 

is shown i n  Figure 15. 

t o  be 3200 G, t he  va lue  f o r  a Grade 6 f e r r i t e ,  and the  g r i d  per iod  

i s  1/2-inch. The dens i ty  i s  expressed i n  s p e c i f i c  g rav i ty  u n i t s  

and the f l u i d  s t r e n g t h  i n  gausses.  Curves a r e  shown f o r  var ious  

The remanent magnetization has been taken 
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362 FAY AND QUETS 

FIGURE 15 

1.- 

2 3 4  5 6 ;  8 9 m  
I S. G. UNITS 

i 
C h a r a c t e r i s t i c  curves  f o r  v a r i o u s  v a l u e s  of u n i t  
permeance. The curves  were computed from Eq 13 
u s i n g  B, = 3200 G and b = 1.27 cm. 
n e g a t i v e  s l o p e s  p o s s i b l e  f o r  h i g h  f l u i d  s t r e n g t h  
and h i g h  u n i t  permeances. 

Note t h e  

v a l u e s  of t h e  u n i t  permeance A .  For low v a l u e s  of A,  the c r i t i c a l  

d e n s i t y  i n c r e a s e s  as t h e  f l u i d  s t r e n g t h  i n c r e a s e s .  For  h i g h  

v a l u e s  of A ,  t h e r e  i s  a maximum c r i t i c a l  d e n s i t y  and t h e  apparent  

d e n s i t y  d e c r e a s e s  w i t h  f u r t h e r  i n c r e a s e s  i n  f l u i d  s t r e n g t h .  This 

is  because t h e  f l u i d  l o a d s  t h e  magnet ic  c i r c u i t .  The maximum i n  

apparent  d e n s i t y  h a s  been observed i n  exper imenta l  tests w i t h  

s t r o n g  f l u i d s  and high-permeance g r i d  s t r u c t u r e s .  

A few experiments  have been made t o  d i r e c t l y  measure the 

buoyant f o r c e s  on a s m a l l  o b j e c t  i n  the gap of a magnet ic  g r i d  

immersed i n  f e r r o f l u i d .  The o b j e c t  w a s  a s m a l l  tungs ten  c y l i n d e r  

connected by a t h i n  rod  t o  an  a n a l y t i c a l  ba lance .  These tests 

proved t h a t  an  o b j e c t  i s  l a t e r a l l y  s t a b l e  on t h e  c e n t r a l  p l a n e  of 
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DENSITY SEPARATION OF SOLIDS 363 

the gap and confirmed the g e n e r a l  form of the a p p a r e n t  d e n s i t y  

p r o f i l e ,  F i g u r e  7 ,  f o r  p o s i t i o n s  above the c r i t i ca l  p o i n t .  A 

b a l a n c e  of f o r c e s  could  n o t  b e  achieved  below the c r i t i ca l  p o i n t  

proving  that  this  r e g i o n  is  u n s t a b l e  as p r e d i c t e d .  The r e s u l t i n g  

apparent  d e n s i t y  p r o f i l e  is shown i n  F i g u r e  16 by t h e  s o l i d  l i n e .  

The dashed l i n e  i n d i c a t e s  the r e g i o n  where a b a l a n c e  of f o r c e s  

could  n o t  b e  achieved.  In these tests, the magnet ic  g r i d  was 

assembled w i t h  f e r r i t e  magnets wi th  a measured B =2600G, and the 

f l u i d ' s  i n t e n s i t y  of m a g n e t i z a t i o n  w a s  measured a t  280 gausses .  
R 

VERTICAL 
DISTANCE 

7. 

2 

1 

-3 -2 -1  
c 

0 
0 

c -  

a 

L - -  I 

I APPARENT DENSITY 
-OHi' 2 3 4 5 dcc 

I 
I 
1 

-1  I MGF - 14 I 14BARS- 13GAPS 
= 280GAUSSES 

FIGURE 16 Densi ty  p r o f i l e  f o r  a magnet ic  g r i d  i n  f e r r o f l u i d .  
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364 FAY AND QUETS 

Densi ty  S e p a r a t i o n s  w i t h  Magnetic Grid F i l t e r s  

A l a b o r a t o r y  s e p a r a t o r  w a s  des igned  s p e c i f i c a l l y  f o r  the 

exper imenta l  s t u d y  of  d e n s i t y  s e p a r a t i o n s  w i t h  the magnet ic  g r i d  

f i l t e r .  It c o n s i s t e d  e s s e n t i a l l y  o f  a box  i n  which t h e  magnet ic  

g r i d  and t h e  f e r r o f l u i d  were c o n t a i n e d ,  a means of  i n t r o d u c i n g  the 

material t o  be  s e p a r a t e d  i n  t h e  v i c i n i t y  of the magnet ic  g r i d ,  

and two removable c o n t a i n e r s  t o  receive the s e p a r a t e d  f r a c t i o n s .  

The g r i d  p l a n e  could  e a s i l y  b e  t i l t e d  by r o t a t i n g  the small  

l a b o r a t o r y  s e p a r a t o r  through the d e s i r e d  a n g l e .  

Densi ty  s e p a r a t i o n s  w e r e  conducted u s i n g  m i x t u r e s  of sand 

The p a r t i c l e  s i z e  (p = 2 . 6  g/cc)  and z i r c o n i a  (p = 5.6 g / c c ) .  

was v a r i e d  from 2.0 mm down t o  74  microns .  S e v e r a l  d i f f e r e n t  

m i x t u r e s  w e r e  used.  The m i x t u r e s  t o  b e  s e p a r a t e d  c o n t a i n  40 ,  

10 and 1 p e r c e n t  by weight  of z i r c o n i a .  

S e p a r a t i o n  of m i x t u r e s  c o n t a i n i n g  l a r g e  p a r t i c l e s ,  2.0 o r  

0.5 mm, w i t h  40 p e r c e n t  by weight  w i l l  b e  d e s c r i b e d  f i r s t .  

F i g u r e  17  shows t h e  e f f e c t  of the i n t e n s i t y  of m a g n e t i z a t i o n  o r  

f l u i d  "s t rength" ,  and of t h e  g r i d  tilt a n g l e ,  on the composi t ion 

of t h e  s i n k  f r a c t i o n  i n  weight  p e r c e n t  of z i r c o n i a .  For  b i n a r y  

s e p a r a t i o n ,  t h e  f l u i d  s t r e n g t h  has l i t t l e  i n f l u e n c e  above a 

c r i t i c a l  v a l u e .  For  weaker f l u i d s ,  the a p p a r e n t  d e n s i t y  r a p i d l y  

approaches t h e  d e n s i t y  of sand and a l l o w s  sand p a r t i c l e s  t o  p a s s  

through the g r i d .  For  coarse p a r t i c l e s ,  t h e  tilt a n g l e  does n o t  

seem t o  have much i n f l u e n c e .  

A s  t h e  p a r t i c l e  s i z e  i s  decreased ,  the s e p a r a t i o n  f o l l o w s  a 

more complex b e h a v i o r .  A s  the tilt  a n g l e  i n c r e a s e s ,  t h e  q u a l i t y  

of t h e  s e p a r a t i o n  seems t o  b e  a d v e r s e l y  a f f e c t e d .  Small p a r t i c l e s  

seem t o  b e  e n t r a i n e d  by t h e i r  n e i g h b o r i n g  p a r t i c l e s  and end up i n  

t h e  wrong d i r e c t i o n :  some z i r c o n i a  p a r t i c l e s  over  t h e  s u r f a c e  of 

t h e  g r i d  w i t h  t h e  m a j o r i t y  of the sand p a r t i c l e s ,  and some sand 

p a r t i c l e s  through t h e  g r i d  w i t h  the m a j o r i t y  of t h e  z i r c o n i a  

p a r t i c l e s .  T h i s  behavior  seems t o  r e s u l t  from the hydrodynamics 

and s u r f a c e  chemis t ry  of t h e  f i n e  p a r t i c l e s  i n  t h e  f l u i d .  
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I I 1 
10 20 30 40 

TILT ANGLE 

FLUID STRENGTH 

FIGURE 17 Ef fec t  of f l u i d  s t r e n g t h  and tilt angle on t h e  
s ink  f r a c t i o n  f o r  a 40% z i r con ia  - 60% sand mixture.  
P a r t i c l e  s i z e :  2 .0  t o  0.5 mm. 

Figure 18 shows t h e  r e s u l t s  of s epa ra t ions  obtained from 

mixtures of f i n e  p a r t i c l e s ,  250 t o  74 microns, conta in ing  only 

1 percent  by weight of z i r con ia .  The amount of z i r con ia  i n  the 

s i n k  f r a c t i o n  now depends on the g r i d  t ilt  angle.  Small t i l t  

angles y i e l d  b e t t e r  separa t ion .  T h e  e f f e c t  of f l u i d  s t rength .  

i n d i c a t e s  t h a t  in te rmedia te  f l u i d  s t r eng ths  are p re fe r r ed ,  

s p e c i a l l y  a t  s m a l l  t i lt  angles.  
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366 FAY AND QUETS 

1 0  20 30 50 100 150 
TILT ANGLE FLUID STRENGTH 

FIGIJRE 18 Ef fec t  of f l u i d  s t r e n g t h  and tilt  angle on the  
s i n k  f r a c t i o n  f o r  a 1% z i rcon ia  - 99% sand mixture.  
P a r t i c l e  s i z e :  250 t o  74 microns. 

Separation made w i t h  mixtures conta in ing  var ious  amounts of 

z i r con ia ,  40,  10 and 1 percent  by weight,  can a l s o  be  used t o  

demonstrate an important f e a t u r e  of t h e  magnetic g r i d  f i l t e r s .  

Consider a mixture of f i n e  z i r con ia  and sand p a r t i c l e s  (250 t o  

74 micron i n  s i z e )  conta in ing  only 1 percent  by weight of 

z i rconia .  Z i rconia  i s  t o  be recovered from t h i s  mixture by 

dens i ty  separa t ion .  For the process t o  be  e f f i c i e n t ,  t he  s ink  

f r a c t i o n  must conta in  a high percentage of z i r con ia  and l i t t l e  

sand, and most of the z i r con ia  should be  recovered. 

Examination of Figure 18 reveals t h a t  t he  sepa ra t ion  of 

1 percent z i r con ia  mixture wi th  100 gauss f l u i d  s t r e n g t h  and a 

10 degree tilt angle w i l l  y i e l d  a s i n k  f r a c t i o n  conta in ing  

13 percent z i r con ia .  

t o  y i e l d  a s ink  f r a c t i o n  of h igher  z i r con ia  content and a second 

f l o a t  f r a c t i o n .  This opera t ion  can be repeated a s  many t i m e s  a s  

This s i n k  f r a c t i o n  can be separa ted  again 
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FIRST FLOAT FRACTION 
0.03% ZlRCONlA 

FIRSTSINK FRACTION 
13% ZlRCONlA 

,. 

SECOND SINK 
66% ZlRCONlA 

THIRD FLOAT FRACTION 
lO%ZIRCONIA 

THIRD SINK FRACTION 
90%ZIRCONIA 

97.5% ZlRCONlA 

TILT ANGLE a = loo FOR ALL STAGES FMF: 100GAUSSES 

F I G U R E  19 Schematic diagram of fou r  magnetic g r i d s  assembled 
i n  a mul t i s t age  sys t em.  

needed t o  obta in  a f i n a l  s ink  f r a c t i o n  containing the  des i r ed  

concent ra t ion  of z i r con ia .  S imi l a r ly ,  each r e s u l t i n g  f l o a t  

f r a c t i o n  can be  processed again t o  recover i t s  z i r con ia  conten t .  

For a p r a c t i c a l  system capable of  performing mul t ip l e  

s epa ra t ion ,  s eve ra l  magnetic g r i d  f i l t e r s  can be  s tacked  on top 

of each o the r ,  and a l igned  end-to-end i n  a "multistage" sepa ra to r ,  

each s t age  performing one s p e c i f i c  separa t ion .  

o ther  experimental  measurements w e  can c a l c u l a t e  t h a t ,  f o r  a 

mixture conta in ing  1 percent  z i r con ia ,  a s t ack  of fou r  g r i d s  

From these  and 
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368 FAY AND QUETS 

would y i e ld  a f i n a l  concentrated s i n k  f r a c t i o n  conta in ing  97.5 

percent by weight z i r con ia ,  Figure 19. The f i r s t  f l o a t  f r a c t i o n  

contains only 0.03 percent  by weight z i r con ia ,  and can be 

a r b i t r a r i l y  discarded. A l l  o the r  f l o a t  f r a c t i o n s  conta in  too  

much z i r con ia  t o  be  discarded. They can a l l  be  f u r t h e r  t r e a t e d  

and returned t o  an upper s t age ,  e i t h e r  i nd iv idua l ly  o r  combined, 

An a l t e r n a t i v e  f o r  t r e a t i n g  t h e  f l o a t  f r a c t i o n s  aga in ,  i s  t o  

extend each s t a g e  wi th  one o r  s e v e r a l  g r i d s  end-to-end. A 

v e r t i c a l  and l a t e r a l  magnetic g r i d  can be  assembled i n  t h i s  

fash ion ,  t o  develop a mul t i s t age  system engineered t o  ob ta in  t h e  

maximum e f f i c i e n c y  f o r  a s p e c i f i c  s epa ra t ion .  

CONCLUSION 

Magnetic g r i d s  c o n s i s t  of p lanar  a r r ays  of p a r a l l e l  b a r s  of 

a l t e r n a t i n g  p o l a r i t y  dr iven  by permanent magnets. 

can be designed by considering i d e a l  g r i d s .  They can be cons t ruc ted  

from shaped i r o n  b a r s  and commercial f e r r i t e  magnets. 

measurements q u a l i t a t i v e l y  agree with the t h e o r e t i c a l  p red ic t ions  

derived from the  study of i d e a l  g r i d s .  

Magnetic g r i d s  

Magnetic 

Magnetic g r i d s  submerged i n  f e r r o f l u i d  have demonstrated the  

c a p a b i l i t y  t o  perform binary  sepa ra t ions  of mixtures of p a r t i c l e s  

of d i f f e r e n t  d e n s i t i e s .  

Assembled i n  a mul t i s t age  system, magnetic g r i d s  are capable 

of e f f i c i e n t  dens i ty  sepa ra t ion  of mixtures covering a wide range 

i n  s i z e ,  inc luding  f i n e  p a r t i c l e s  i n  the  micron range. 
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